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1. Introduction

To help Dr. S to continuously improve his grocery store performances by driving up sales and
revenues, we explore the use of personalized coupons for individual shoppers to capture
additional purchases that are not likely to take place had there been no coupons. Ideally, we
would select the price sensitive products for each shopper and trigger the purchase by
offering coupons and reducing the price.

The marketing mix tools around coupon strategies have been evolving over time as the
objectives of retailers pivoted. Decades ago there has been limited personalization in terms of
coupon strategies. Retailers offered coupons with the same discounts on the same set of
products to all customers, normally printed on brochures or leaflets sent by mail to
households or placed at the entrance of supermarkets. Shoppers would spend time reading
through all discounted products, create their shopping list and present the physical coupon at
checkout to redeem discounts. The most common personalization applied 1is
geo-customization, where different promotion campaigns are targeted at consumers living in
different areas. Nowadays, enabled by vast development of big data and smartphone
technologies, retailers are offering us more digital ways to redeem coupons with some degree
of personalization in an exchange for our shopping data. Commonly, marketers segment
customers according to their demographic data, purchase histories or their stage of customer
journeys into different subgroups and target them with different promotional campaigns to
drive sales. Customers will be targeted with different discounted product offerings through
channels including mail, kiosk machines, mobile apps, email, and much more. While all these
factors affect coupon strategy efficiency, in this paper, we will focus on finding the perfect
product and price combination for each customer.

When solving this optimization problem, we focused on tackling some issues that marketing
managers might still not be aware of. In some cases, some are overly focused on measuring
coupon redemption rate as a success measure, while neglecting the fact that they might not be
offering coupons to only the customers who wouldn't buy the products with the original price,
leading to a revenue loss because of the discounts offered. In other cases, marketing
managers only leveraged pre-defined product information such as product aisle or product
category information for their analysis and overlooked other latent relationships between
products that may characterize a shopper, such as when shoppers only buy baby products or
organic products. We will tackle these problems by applying an optimization model that
selects products with the highest sales uplift after coupon application, and uncover latent
relationship between products by applying neural network models.
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Thanks to Dr. S distributing random discounts to random products for random shoppers in the
past 90 weeks, we have gathered enough data to take on an all rounded approach to take on
this optimization problem.

2. Approach
2. 1. Merging information from different datasets and labelling target variable

We are given two datasets, namely baskets and coupons, which includes purchase
information of shoppers from week 0 to week 89, and coupon information which tells which
products were purchased by using coupons. We have started to work by merging these two
datasets. The problem with the resulting set is that it only consists of the purchase records.
That is, there is no record where the target variable would be 0. Therefore, it is a must to
generate some records which have a value of 0 in the target variable column; otherwise the
model will always predict 1.

Our approach to the creation of such “artificial” records is as follows:

First, we have found the list of all of the different products that a customer purchased during
89 weeks. We assume that a customer purchases among those products when she/he visits the
shop. Therefore for each week the set of products that a customer can buy is restricted to the
list described above. As a second step, we have created 90 copies of the resulting shopper
product combinations to represent the customer’s available product options for each week.
And then we merged the resulting dataframe with the original dataset we are given with so
that the products that s/he purchased will have 1 in the target variable and O if not. Another
approach of creating such “artificial” records could be to assume that there are 250 products
that a customer can purchase every week. However this would result in creating a very huge
dataset which mostly has “0” in the target variable column because the number of products
that a customer purchases each week is around 10 products on average, which means that the
number of records which belong to class 0 (purchased =0) would be 25 times more than the
number of records that belong to class 1 (purchased =1).

In the creation of these artificial records, we have assumed that there are no discounts.
Therefore, we have set the prices of those products to original prices (no discount) of the
products. The original prices are the mode of the prices for every product, assuming that the
number of times a product offered with a discount must be less than without a coupon.

2. 2. Training Dataset Size

Feeding a large dataset to train would provide our models more information and eventually
yield better targeting performance, but it can also be very costly, time-consuming or even
infeasible. With an original dataset that contains 100,000 shoppers’ shopping information
over 90 weeks, we used only 2,000 shopper’s data for model training which accounts for only
2% of the original dataset. Since Dr. S. would evaluate the result on 2,000 shoppers, it was
our practical choice for our first model training. Later we iterated through a few testings with
different dataset sizes, when we increased the dataset size from 2,000 shoppers to 5,000
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shoppers, the training time almost doubled (30min vs 50min) taking up 96Gb ram while our
measured accuracy only increased 0.5%. We believe that 2,000 shoppers is a practical and
reasonable training set size in our case which also provides good training performance.

While we reduced the dataset size by reducing shopper dimension, we decided to keep all 90
weeks because of the invaluable shopper habits and buying cycle information that we can
generate by including time effects in our feature engineering.

2. 3. Finding structures between products in the same shopping basket

In order to find out existing market structures of our products and analyse their
within-category substitution or complementarity effects, we adapted a pioneering approach
proposed recently where researchers leveraged neural network language model to derive and
visualize latent product attributes (Gabel et al, 2019) on a two-dimensional
product2vec-map. With the results, we grouped the products by their similarities and created
features for our model to learn about how the products compete with each other to enter a
shopping basket. Since this model leverages and analyses the co-occurrences of products in
shopping baskets, we compared the results with a traditional co-occurrence matrix as in
Figure 1., with the product2vec-map showed on the left and a map of product co-occurrences
within the same basket on the right.

The graph on the left visualizes the clustering output of a Word2Vec model, where similar
products are located close to each other and are grouped into a single cluster which we would
use as our product category information. The co-occurrence matrix on the right applies colors
to product pairs by the frequency that they occur together in the same basket. By comparing
the two approaches, we found that products grouped into the same category by their
similarities are never purchased together. From the two graphs, we also observed that the
product ids in our dataset are perfectly ordered by their categories, namely the first 10
products (0,...,9) are never purchased together, same as every other next 10 products
(10.,...,19). Both maps confirm that there are 25 categories to be identified based on product
similarity and co-occurrences, we can derive the same results by applying k-means clustering
to the neural network output or assigning every 10 products a new category manually.

With this product category information, we can generate new features that will not only
account for the products substitutional or complementarity effect, namely how the purchase
of one product affects others that are within or not within the same category, but more
importantly how distributing a coupon to the product will not only affect its purchase
probability but also create side effect to other products. We will give more details about how
we leveraged category information to generate useful features for our training set in section
2.5.
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Figure 1: P2V-MAP(left) and product co-occurrence matrix(right)

2. 4. Finding structures between product categories in the same basket

From Gabel’s work, we learned that products from different categories would form larger
clusters if they are complements with similar use cases and are frequently purchased together.
Therefore, after assigning categories to the products, we further investigated how these
product categories relate to each other. Similar to product purchase patterns within the same
baskets, there might exist category purchase patterns, where some category groups or pairs
never or are often purchased together.

In our P2V-MAP, we have seen how all clusters are perfectly separated from each other with
the same distance in between. Although we can identify that some categories are more
because they are closer to each other, we are not able to make a clear differentiation or create
clear groupings between these categories. It is hard for us to identify any larger clusters based
on their similarity. We used the same approach to create category2vector-map and visualized
categories based on their similarity as in Figure 2 and found exactly the same structure as
before.

We continued with creating a co-occurrence matrix of categories in order to see which of
them appear more or less often together in the same basket. By clustering the co-occurrences,
3 main groups of categories can be identified. These three groups correspond to the
categories on columns 0-2, 3-10 and the rest where they are very often, rarely and are
sometimes purchased together respectively. We believe that this information gives us some
degree of product complementarity, and included the category cluster information in our
training data so that the model can learn if one product has a high purchase probability (with
or without coupons), another product from the same category cluster would also have a high
purchase probability.
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Figure 2: category2vector-map (left) and category co-occurrence matrix(right)

2. 5. Feature engineering

We created multiple sets of features to cover different effects on a product’s purchase
probability. First, we have the effect of recent category purchases that would model how
often a user buys a product or from a specific category. Then, we have the coupon effect that
accounts for how applying discounts affect the purchase probability. Last but not the least, we
have promotion effects that differ for same category products (substitute effect) or for
products within the same category grouping (complementarity effect).

In the first set of features that models for the effect of recent category purchases, we account
for shoppers’ different purchase behavior for different products over time. First, we
calculated ‘purchase history n’ with n € {3,4,5} indicating how many times a customer has
purchased a particular product in the last n visits. Gabel et al. (2020) argues that recent
purchases are more relevant for the purpose of modelling purchase histories and n=co can be
used as a summary of entire purchase history. Therefore, we filtered by time to get a sparse
purchase history of every shopper x product combinations as well as added another variable
to account for older purchases. Then, we attained purchase cycles of all product and shopper
combinations which translates to how many weeks has passed by as a percentage of the
shopper’s averaged purchase frequency for the product. If the shopper normally buys a
product every 1 weeks, and j weeks has passed by since the last purchase, then it would have a
purchase cycle of j/i. For the purchase frequency 1, probability of buying the same product
one week after the last purchase becomes 1/t and it increases as time goes by.

In the second set of features about product discount effects, we accounted for how applying
coupons to a product changes its purchase probability. First, we created a variable called
‘indiff to price’ which indicates whether a shopper has paid more than one unique price for a
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product. If this is the case we can say that the shopper is indifferent to price changes, where
the product was purchased with and without discounts and sometimes with different sizes of
discounts applied. To optimise coupon strategies, it would be desirable to avoid offering
coupons to products where their shoppers are indifferent to price, because instead of
increasing revenue with the help of coupons, we are not necessarily able to increase the
product’s purchase probability while decreasing our potential revenue by reducing the price
of a product that the shopper would also buy without coupons. Additionally, we created
variable ‘only with coup’, which is also a Boolean showing if the shopper has only
purchased the product with a coupon and never without discount. To create the variable, we
searched wherever the product is discounted and the shopper is not indifferent to price
changes which means she paid only discounted prices for the product.

Last, we created variables based on categories created from product2vector and co-occurrenc
analysis to account for promotion effects within and between the same category. We were
well aware that the same category and substitute products would never appear in the same
basket, and at most one product from a category would appear in the shopping basket at the
same time. Thinking that we might further leverage the variable ‘only with coup’ to reveal
the average discount needed for a particular customer to buy from the category, we calculated
the average size of coupons given to a shopper in each category and named it as
“average coup”. To account for substitute/within-category promotion effect, we created a
‘despite_coupon’ variable which indicates whether the shopper was purchasing an
undiscounted product from a category although she received a coupon for another product in
the same category. If this is the case, the substitution effect of this product category for this
shopper is very low, since the shopper is loyal to a specific product and is not likely to try out
other similar products with more attractive prices. To account for promotion effects of
complementary products, we created weight of evidence for the category clusters that we
applied to indicate to the model that there might exist a latent relationship.

2. 6. Train-test split approach (Evaluating solutions offline)

Evaluating solutions offline is usually done with the data at hand by taking one fifth of the
data randomly as a test set which consists of unseen data and the rest is used to train the
model. In other words, offline evaluation is performed on a newly trained model with
available historical data which is unseen by the model. According to Parunov (2019), the goal
of the offline evaluation is to get the performance of a model on data points which are present
in the database and select the best model up to a knowledge at the time of training. Hold-out
validation, cross-validation and bootstrapping are the mechanisms of offline evaluation.

Brownlee (2019) asserts that usual methods such as k-fold cross validation do not work in
time-series related data due to ignoring the temporal component of the inherent problem.
Since we deal with a dynamic machine learning problem where the environment changes
over time, we should use a splitting approach that is based on time in order to have a more
realistic and robust evaluation. However, our problem is not an ordinary time series while
having a substantial time dimension. Then we should utilise ‘time-based cross validation’



Abdallah Maarouf (611063), Sezen Kilicarslan (610164), Winnie Leung (610175), Ecem Selen Seltuk (610402)

which is a highly favourable method in time related splitting tasks (Herman-Saftar, 2020).
Time-based cross validation forms ‘sliding-window’ training which is the use of prior time
steps to test the next time step (see Figure 3).

Time-based Estimation
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Figure 3: Time-based cross validation approach

In order to create robust and general models, we will use several splitting points in time and
then apply time-based cross validation. For our purposes, we chose to train on the first 84
weeks and then test on the 85™ week. In the second step, we train the model on the weeks
between and including 2-85, then test on the 86™. We slide the windows up until 89™ week is
tested, keeping in mind that the testing period must always be the same size i.e. one week.
The final test result is the weighted average over all testing windows.

We could have generated more sliding windows in other words training on fewer weeks,
however it would be computationally costly.

In her article, Herman-Saffar (2020) summarizes the drawbacks of Scikit-learn’s
TimeSeriesSplit method: 1) When splitting the data in train/test sets, the method doesn’t
allow to specify set sizes but the number of splits. 2) It assumes that there is only one
observation per date. Thus, we utilised her suggested solution on towardsdatascience.com
which allows us to choose relevant window size.

Parameters of her cross validator are ‘train _period’ which is for us 1-84 and 2-85 so on,
‘test_period’ which i1s 84-85 and 85-86 etc. Lastly, ‘freq’ is needed in the case where time is
given in date format, however it has to be defined in order to create the class object. It can
also be simply deleted in our case. Moreover, the methods are ‘get n_splits’ which returns
the number of splitting iterations in the cross validator and ‘split’ which returns a list of
tuples as train and test indices similar to sklearn cross-validators. The metrics that the
cross-validator uses to get accuracy is R?, log-loss and ROC-AUC.
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2. 7. Model Selection

There are 3 models that we have trained to predict the probability of purchases. These models
are Logistic Regression, Random Forest Classifier and XGBoost classifier. The dataset to be
trained is very large; therefore, we chose the models that can be trained in a limited time
window. For example, knn is expected to be slower than linear regression because of the
costly calculation of the distance matrices or neural networks would take longer than logistic
regression depending on the network size. In the table below auc scores Log-Loss values of
the models that we tried can be seen. The best performing model on our training data with
2000 customers is XGBoost classifier with an auc score of 0.835. The 5 week cross
validation lasted around 35 mins and the training with the entire dataset lasted 15 mins for
XGBoost.

XGBoost Logistic Regression | Random Forest
AUC 0.835 0.825 0.824
Log-Loss 0.259 0.277 0.279

Table 1: Comparison of deployed models versus metrics that were used
2. 8. Feature importance
After the model selection, the features which add the most gains to the model accuracy are

selected to be used in the final training and prediction. The most important 5 features are
listed below (see Table 2):

'Cumsum’ 1444.02261
'purchase_cycle' 207.85005
'last_occurance’ 199.15393
‘discount_x' 63.15436
'purchase__history 5' 241.45364

Table 2: The most important 5 features that lead to a gain

The most important feature is Cumsum which refers to the entire purchase history. Second
most important one is the purchase history of the last 5 visits. As it is stated in Gabel et al.,
2019, the recent purchase history is important besides the entire purchase histories. Purchase
cycle and last time that the product was purchased were also among the top 5 features. They
define the purchase pattern for a shopper and a product and they help models to make more
accurate purchase probability predictions. Lastly, feature importance indicates that discount
amount is also an important factor in the customer purchase decision process.



Abdallah Maarouf (611063), Sezen Kilicarslan (610164), Winnie Leung (610175), Ecem Selen Seltuk (610402)

3. Results
3. 1. Selecting five products to assign coupons to

The predictions were made based on the model and features that are explained in the previous
sections. In the test set, there are 2000*250*5 probabilities to be predicted - for each shopper
(2000 shoppers) predict purchase probability for every product (250 products) discount (5
types of discount (0 discount also included)) combination. Given the purchase probabilities,
the revenue from a single customer is calculated as in the following equation:

The total revenue is calculated as follows:

R = Zpdr)(i - d)
There are 5 coupons to be given to an individual customer. Coupons can have 0.15, 0.20,

0.25, and 0.30 discounts. Knowing the probability purchase of a customer for all product
discount combinations, it is straightforward to select the 5 product-discount combinations that
increase the revenue the most compared to not giving a discount at all. If the revenue uplift is
maximized for every individual customer, then it applies that the total revenue across all
customers is also maximized.

The selected model was given week 90 data, of all unique shopper-product combinations that
did appear in the history of purchases, and asked to predict purchase probability 5 times on
all provided data, once with no discount applied, and once for every discount to be offered,
15%, 20%, 25% and 30%. Expected revenues were calculated accordingly using the total
revenue function. Revenues with no discount were subtracted from coupon-applied expected
revenues to provide uplift. 5 most uplifting revenues per shopper were selected to have
coupons with the maximizing discount percentage, and assigned coupons 0 to 4, from most to
least.

The maximization part may not be straightforward if there were more constraints to the
coupon recommendation problem. For example, it can be the case that a customer cannot
receive more than one coupon with 0.3 discounts. When such constraints are also given, then
it is recommended to implement integer programming.

3. 2. Limitations of our approach

Due to time constraints, we weren’t able to apply the following improvements to our model.
Firstly, to enhance our model, we could have added the effect of recent category purchases.
That way the probabilities of buying a product from the category would be decreased in the
following weeks which will lead to a more accurate prediction. Secondly, we would evaluate
our results by analysing a random product through a discount in a complementary category as
well as a discount in a substitute in the same category. In the third place, we couldn’t deploy
any other reference models than Logistic Regression and Random Forest, we believe we
could have achieved a higher accuracy with a Neural Network or k-Nearest Neighbor since
for NN we need larger data but it would have been slower to deploy when compared to, for
example, Logistic Regression. On the other hand, the average accuracy is always better with
a neural network. Another limitation that has arisen due to limited time is that we weren’t
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able to apply hyperparameter tuning which also could have resulted in a better accuracy.
Additionally, in the feature engineering process, we could have created extra variables
besides cluster weight of importance to account for the complementarity effect.
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